

(GFUC)

MODELO

PED.008.03

Curso	Ciência de Dados e Inteligência Artificial							
Unidade curricular (UC)	Tópicos de Inteligência Artificial							
Ano letivo	2023-2024	Ano	2.º	Período	1.º semestre	ECTS	7	
Regime	Obrigatório	Tempo de trabalho (horas)			Total: 196	Contacto: 60		
Docente(s)	Celestino Pereira Gonçalves							
☐ Responsável	da UC ou							
⊠ Coordenador(a)	Área/Grupo Disciplinar	José Carlos Fonseca						
☐ Regente	(cf. situação de cada Escola)							

GFUC PREVISTO

1. OBJETIVOS DE APRENDIZAGEM

- 1. Caracterizar Inteligência Artificial e a sua aplicabilidade.
- 2. Conhecer os temas emergentes na Inteligência Artificial.
- Caracterizar e aplicar agentes inteligentes na solução de problemas, recorrendo a estratégias de procura sistemáticas, de procura heurísticas, de representação de conhecimento, de aprendizagem, de adaptação e com multiagentes.
- 4. Aprender o paradigma de programação lógica.

2. CONTEÚDOS PROGRAMÁTICOS

- 1. Introdução e Contexto da Inteligência Artificial.
 - 1.1. Definição, caracterização e domínios de aplicação.
 - 1.2. Os diferentes paradigmas da Inteligência Artificial.
 - 1.3. Resenha histórica.
 - 1.4. Temas emergentes e impacto.
 - 1.5. Regulamentação da aplicação da Inteligência Artificial.
- 2. Agentes Reativos.
 - 2.1. Arquitetura.
 - 2.2. Agentes puramente reativos.
 - 2.3. Agentes reativos com memória.
- 3. Agentes de Procura.
 - 3.1. Arquitetura.
 - 3.2. Procura cega.
 - 3.3. Procura heurística.
 - 3.4. Procura estocástica.
 - 3.5. Critérios de escolha.
- 4. Agentes Baseados em Conhecimento.
 - 4.1. Arquitetura.
 - 4.2. Sistemas de representação de conhecimento e de raciocínio (abordagens computacional, conexionista e biológica).

(GFUC)

MODELO

PED.008.03

- 5. O Paradigma de Programação em Lógica.
 - 5.1. Lógica de predicados de primeira ordem.
 - 5.2. Conhecimento declarativo representado em programação em lógica.
 - 5.3. Sistemas de Regras baseadas na Fuzzy Logic.
 - 5.4. Programação em lógica.
- 6. Computação Evolutiva.
 - 6.1. Algoritmos Genéticos.
 - 6.2. Programação Genética.
 - 6.3. Estratégias Evolutivas.
 - 6.4. Programação Evolutiva.
- 7. Inteligência Distribuída e Sociedades de Agentes.
 - 7.1. Sociedades de dois agentes.
 - 7.2. Sistemas Multiagentes.
 - 7.3. Agentes deliberativos.
 - 7.4. Sistemas de inteligência coletiva.

3. DEMONSTRAÇÃO DA COERÊNCIA DOS CONTEÚDOS PROGRAMÁTICOS COM OS OBJETIVOS DA UC

- O Conteúdo 1 está coerente com os Objetivos 1 e 2, uma vez que são focados aspetos de caracterização e evolução da área da Inteligência Artificial, bem como os diversos domínios de aplicação, a regulamentação, a apresentação de temas emergentes e a discussão do respetivo impacto.
- 2. Os Conteúdos 2, 3, 4, 6 e 7 estão coerentes com o Objetivo 3, uma vez que são analisadas e utilizadas diversas estratégias na construção de agentes inteligentes para a solução de problemas, como por exemplo estratégias de procura sistemáticas, de procura heurísticas, de representação do conhecimento, de adaptação e com multiagentes.
- 3. O Conteúdo 5 está coerente com o Objetivo 4, uma vez que são apresentados conceitos e técnicas de programação em lógica e aplicados os diferentes elementos de programação numa linguagem de programação em lógica.

4. BIBLIOGRAFIA PRINCIPAL

Obrigatória:

- 1. Costa, E., Simões, A., Inteligência Artificial Fundamentos e Aplicações, 2.ª Edição, FCA, 2008. ISBN: 978-972-722-340-4.
- 2. Russel, S., Norvig, P., Artificial Intelligence: A Modern Approach, 4th Edition, Pearson, 2021. ISBN: 978-1292401133.
- 3. Martins, J.P., Lógica e Raciocínio, Coleção Ensino da Ciência e da Tecnologia, IST Press, 2021.
- 4. Lista de artigos científicos selecionados em fontes de referência.

(GFUC)

MODELO

PED.008.03

Recomendada:

- 5. Kouziokas, G., Swarm Intelligence and Evolutionary Computation: Theory, Advances and Applications in Machine Learning and Deep Learning, CRC Press, 2023. ISBN: 978-1032162508.
- 6. Peckol, J.K., Introduction to Fuzzy Logic, Wiley, 2021. ISBN: 978-1119772613.
- 7. Poole, D.L., Mackworth, A.K., Artificial Intelligence: Foundations of Computational Agents, 3rd Edition, Cambridge University Press, 2023. ISBN: 978-1009258197.
- 8. Wooldridge, M., An Introduction to MultiAgent Systems, 2nd Edition, Wiley, 2009. ISBN: 978-0470519462.
- 9. Moroney, L., Al and Machine Learning for Coders: A Programmer's Guide to Artificial Intelligence, O'Reilly Media, 2020. ISBN: 978-1492078197.
- 10. Berthold, M.R., Borgelt, C., Höppner, F., Klawonn, F., Silipo, R., Guide to Intelligent Data Science: How to Intelligently Make Use of Real Data, Second Edition, Springer, 2020. ISBN: 978-3030455767.
- 11. Rich, E., Knight, K., Nair, S., Artificial Intelligence, Third edition, Tata McGraw-Hill, 2010. ISBN: 978-0070678163.
- 12. Rocha, M., Ferreira, P.G., Análise e Exploração de Dados com R, FCA, 2017. ISBN: 978-972-722-863-8.
- 13. Bramer, M., Logic Programming with Prolog, Second edition, Springer, 2013. ISBN: 978-1-4471-5486-0

5. METODOLOGIAS DE ENSINO (REGRAS DE AVALIAÇÃO)

Metodologias de ensino:

- 1. Lição expositiva.
- 2. Lição interativa.
- 3. Resolução de problemas.
- 4. Sessão de orientação tutorial.

Regras de avaliação:

Avaliação contínua

- 1. Prova de frequência: 40% (Mínimo: 6/20).
- 2. Componente prática: 50%. Avaliação individual presencial do desempenho do aluno na elaboração de trabalhos práticos nas sessões de orientação tutorial (Número máximo: 1 trabalho por semana). Deve ficar concluída até à última semana de aulas.
- 3. Assiduidade e participação: 10%. Assiduidade e participação nas aulas com a elaboração de trabalhos práticos propostos, validados em aula e com relatório entregue na semana seguinte.
- 4. O trabalhador-estudante pode solicitar ao docente, se necessário, horários alternativos para se submeter à avaliação da componente prática, mas fica obrigado aos mesmos requisitos dessa componente de avaliação.

Avaliação por exame final (Épocas normal, de recurso ou especial)

- 1. Componente 1 (prova escrita): 50% (Mínimo: 6/20).
- 2. Componente 2 (componente prática): 50%. O estudante pode ser dispensado desta componente se tiver obtido classificação da componente prática da época de avaliação contínua.

(GFUC)

MODELO

PED.008.03

6. DEMONSTRAÇÃO DA COERÊNCIA DAS METODOLOGIAS DE ENSINO COM OS OBJETIVOS DA UC

- 1. Lição expositiva está coerente com os objetivos devido à necessidade de apresentar e relacionar os conteúdos teóricos aos estudantes, nomeadamente a caracterização da Inteligência Artificial (IA) e a sua aplicabilidade (Objetivo 1), a necessidade de regulamentação, a apresentação de temas emergentes no domínio da IA e a discussão do respetivo impacto (Objetivo 2), a caracterização e análise das diversas estratégias para resolução de problemas de IA (Objetivo 3) e os elementos e técnicas de linguagem de programação em lógica (Objetivo 4).
- 2. Lição interativa está coerente com os objetivos uma vez que a interação entre os intervenientes na sala de aula favorece a aquisição dos conceitos e competências necessários para a utilização das diversas estratégias na solução de problemas de IA (Objetivo 3) e para o desenvolvimento da prática de programação em lógica (Objetivo 4).
- 3. Resolução de problemas está coerente com os objetivos pois a aplicação de conteúdos teóricos a exercícios práticos de inspiração realista, relacionados com problemas típicos de Inteligência Artificial (Objetivos 3 e 4), ajuda a consolidar as competências adquiridas, realçando o saber fazer.
- 4. Sessão de orientação tutorial está coerente com os objetivos uma vez que é utilizada para supervisionar e controlar o trabalho independente do estudante, nomeadamente através da realização de trabalhos práticos semanais que visam obter a solução de problemas típicos de IA, considerando diversas estratégias de construção de agentes inteligentes (Objetivos 3 e 4), permitindo-lhe ver o seu trabalho validado pelo docente, bem como esclarecer todas as dúvidas existentes.

7. REGIME DE ASSIDUIDADE

Não existem requisitos mínimos.

8. CONTACTOS E HORÁRIO DE ATENDIMENTO

Nome	Email	Telefone	Gabinete	Horário de atendimento
Celestino Gonçalves	celestin@ipg.pt	1202	2	Terça-feira: 18:30-20:30 Quarta-feira: 16:00-20:00

DATA 25 de setembro de 20	023
ASSINATURAS	O(A) Docente
	(assinatura)
	O(A) Coordenador(a) da Área/Grupo Disciplinar

(assinatura)