

(GFUC)

MODELO

PED.008.03

Curso	Engenharia Informática						
Unidade curricular (UC)	Sistemas Domóticos						
Ano letivo	2023/2024	Ano	2º/3º	Período	2.º semestre	ECTS	4
Regime	Opcional	Tempo de trabalho (horas)		Total: 112	Contacto: 45		
Docente(s)	Fernando Melo Rodrigues						
☐ Responsável	da UC ou						
⊠ Coordenador(a)	Área/Grupo Disciplinar	Fernando Melo Rodrigues					
☐ Regente	(cf. situação de cada Escola)						

GFUC PREVISTO

1. OBJETIVOS DE APRENDIZAGEM

Pretende-se que o aluno adquira conhecimento das tecnologias dos sistemas de domótica e gestão técnica. Em particular o aluno deve:

- O1. Discutir a crescente importância e impacto da automação de edifícios na indústria dos edifícios e das habitações,
- O2. Comparar de forma critica os sistemas de automação de edifícios e domótica existentes no mercado,
- O3. Descrever de forma aprofundada a tecnologia KNX, bem como ser capaz de caracterizar os seus campos de aplicação,
- O4. Planear uma solução baseada na tecnologia e KNX interagindo com os diversos sistemas dos edifícios e habitações

Programar um sistema de automação de edifícios e habitação baseada na tecnologia KNX recorrendo à ferramenta ETS.

2. CONTEÚDOS PROGRAMÁTICOS

- C1. Introdução à Domótica
 - a. Conceitos de automação de edifícios gestão técnica de edifícios e domótica
 - b. Funções e campos de aplicação
 - c. Arquitectura dos sistemas de automação de edifícios e habitações
 - d. Instalações eléctricas adaptadas aos sistemas de automação de edifícios
- C2. Protocolos de sistemas domóticos
 - a. Âmbito de aplicação dos protoclos
 - b. Processos de transmisão de dados/ordens, com e sem fios
 - c. Caracterização dos protocolos X10, LonWorks, KNX, BACnet, ZigBee, Z-Wave, EnOcean

(GFUC)

MODELO

PED.008.03

- d. Sistemas de integração de sistemas IoT MQTT e HomeAssistant
- C3. Tecnologia KNX
 - a. Meios de transmissão KNX
 - b. Mecanismos de comunicação
 - c. Objectos e endereços de comunicação
 - d. Dispositivos KNX
- C4. Ferramenta ETS (Engineering Tool Software)
 - a. Interface com utilizador
 - b. Configuração e parametrização de equipamentos
 - c. Diagnóstico e resolução de problemas nas instalações KNX
- C5. Casos de estudo
 - a. Análise de uma solução para uma habitação
 - b. Análise de uma solução para uma grande indústria

3. DEMONSTRAÇÃO DA COERÊNCIA DOS CONTEÚDOS PROGRAMÁTICOS COM OS OBJETIVOS DA UC

O O1 será atingido pelos C1. Introdução dos conceitos de automação de edifícios (C1a), caracterização dos campos de aplicação: iluminação, sombreamento, eficiência energética, segurança, controlo áudio/vídeo, etc (C1b). Caracterização dos sistemas quanto à arquitetura (C1c). Por fim, diferenciam-se as instalações elétricas convencionais e as domóticas (C1d).

O O2, será concretizado pela apresentação e caracterização dos protocolos disponíveis no mercado (C2c). Previamente serão estabelecidos os meios de transmissão (C2b), faz-se a caracterização do âmbito de aplicação (C2a).

O O3 será substanciado pela caracterização do protocolo KNX (C3 e C4). Aborda-se a tecnologia KNX em C3a/b/c. Serão analisados e parametrizados dispositivos KNX (C3e e C4a/b).

Os objetivos O4 e O5 serão alcançados através da apresentação do C4 e C5. O planeamento de uma solução de forma autónoma será o culminar da UC. Esta será atingida com uma análise de casos de estudo (C5a/b) e com o domínio da ferramenta ETS..

4. BIBLIOGRAFIA PRINCIPAL

Obrigatória:

- B1. Handbook for Home and Building Control Basic Principles, ZVEI 2006, 5ª edição
- B2. KNX Training Documentation, edição de Fev. de 2015, KNX Association
- B3. Textos de Apoio, Fernando Melo Rodrigues

(GFUC)

MODELO

PED.008.03

Recomendada:

- B4. Building Automation Communication Systems with EIB/KNX, LON, and BACnet, Springer 2009
- B5. KNX System Specifications, KNX Association Version 2.1, Update. 2015

5. METODOLOGIAS DE ENSINO (REGRAS DE AVALIAÇÃO)

Metodologias de ensino:

- 1. Lição expositiva
- 2. Pesquisa individual
- 3. Trabalho de grupo
- 4. Estudo de casos
- 5. Demonstração experimental

Regras de avaliação:

A aprovação obtém-se quando a média ponderada dos factores de avaliação frequência/exame e componente prática, for igual ou superior a dez valores, sendo dispensados de exame. A Avaliação contínua consiste:

Realização trabalho de síntese, trabalho de grupo, e laboratórios, três no total. O trabalho de síntese consiste no estudo e análise de um protocolo de automação, o trabalho de grupo consiste na exploração de um equipamento, fazendo o seu estudo detalhado, ensaiando-o nos casos em que isso for possível. Os laboratórios serão para consolidação dos conceitos e abordarão as várias funções básicas de automação (60%).

Realização de uma prova escrita (frequência/exame/exame recurso), onde são formuladas questões teóricas e teórico-práticas, com o objectivo de avaliar os conhecimentos científicos adquiridos e o domínio prático das matérias exploradas nas aulas (40% - nota mínima 7 valores).

Avaliação por exame/recurso: Prova escrita (40%). Componente pática se não realizada no período de avaliação continua.

6. DEMONSTRAÇÃO DA COERÊNCIA DAS METODOLOGIAS DE ENSINO COM OS OBJETIVOS DA UC

Relacionar cada objetivo de aprendizagem com as metodologias de ensino aplicadas à UC.

Tamanho máximo do campo, incluindo espaços: 3000 carateres; no caso de módulos, os 3000 caracteres aplicam-se a cada módulo.

(GFUC)

MODELO

PED.008.03

7. REGIME DE ASSIDUIDADE

A frequência das aulas não é obrigatória, contudo para aprovação da UC é necessária a realização da componente prática em todas as épocas de avaliação. Os dois primeiros trabalhos devem ser entregues até ao dia anterior à prova de exame/exame recurso, e os laboratórios são realizados no dia do exame/exame de recurso. O aluno deve pedir os temas dos dois primeiros trabalhos ao docente com um período suficiente para o seu desenvolvimento.

DATA

19 de fevereiro de 2024

ASSINATURAS

Assinatura dos Docentes, Responsável/Coordenador(a)/Regente da UC ou Área/Grupo Disciplinar

O(A) Docente

Fernando Melo Rodrigues (assinatura)				
	(assinatura)			