

GUIA DE FUNCIONAMENTO DA UNIDADE CURRICULAR

(GFUC)

PED.008.03

Curso	Engª Informática						
Unidade curricular (UC)	Sistemas Digitais II						
Ano letivo	2023/2024	Ano	2.⁰	Período	1.º semestre	ECTS	5
Regime	Obrigatório	Tempo de trabalho (horas)			Total: 140	Contacto: 105	
Docente(s)	António Mário Ribeiro Martins						
🛛 Responsável	da UC ou						
🗌 Coordenador(a)	Área/Grupo Disciplinar	Fernando Melo Rodrigues					
🗌 Regente	(cf. situação de cada Escola)						

GFUC PREVISTO

1. OBJETIVOS DE APRENDIZAGEM

Descrição do funcionamento de básculas SR, D, JK e T.

Descrição de vários tipos de registos e projeto de contadores.

Descrever circuitos aritméticos sequenciais.

Projetar sistemas sequenciais síncronos usando os modelos de Mealy e Moore.

Projetar DAC's. Descrever alguns tipos de ADC.

Explicar os dois tipos de memórias: ROM e RAM. Projetar expansões de memória.

Projeto de controladores usando registos de deslocamento.

2. CONTEÚDOS PROGRAMÁTICOS

Básculas SR e variante mestre escravo da mesma. Flip-flop D gatilhado no flanco ascendente. Báscula JK. Registos básicos. Registos de deslocamento. Métodos de interligação de registos e bancos de registos. Contadores assíncronos e diagramas temporais. Contadores síncronos realizados com flip-flop JK ou D. Contadores com incremento.

Circuitos aritméticos sequenciais: Somador série, acumuladores e divisores sequenciais. Divisão e multiplicação por dois de um número em BCD.

Projeto de sistemas digitais síncronos. Modelos de Mealy e Moore. Diagramas de estado e tabelas de transição de estado.

Conversão digital analógica. DAC de resistências ponderadas e em escada. ADC: Circuitos por contagem, por aproximações sucessivas e com comparador paralelo.

Memória ROM. Elemento básico de uma RAM estática, memórias de N elementos de um bit. Expansão para memórias de k palavras de M bits.

Controladores digitais. Projeto por registos de deslocamento e resposta condicional destes.

GUIA DE FUNCIONAMENTO DA UNIDADE CURRICULAR

(GFUC)

MODELO

PED.008.03

3. DEMONSTRAÇÃO DA COERÊNCIA DOS CONTEÚDOS PROGRAMÁTICOS COM OS OBJETIVOS DA UC

As básculas são os elementos básicos para se aprender registos e contadores. O conhecimento destes dois componentes permite aprender, por exemplo, a divisão binária por subtrações sucessivas, assim como a mudança de base de BCD para binário.

Relativamente ao projeto de sistemas digitais síncronos, objetivo pedagógico número dois, é necessário ensinar modelos de Mealy e Moore, diagramas de estado e tabelas de transição de estado, obter diagramas de estado simplificado, por eliminação de estados redundantes.

Relativamente ao projeto de DAC, e explicação de ADC, tal só será possível se forem ensinados os circuitos aos alunos.

O projeto de expansão de memórias exige a descrição dos circuitos, dos vários tipos, para se projectar a expansão de memória RAM.

Finalmente, os controladores digitais permitem o entendimento sucinto de um computador.

4. BIBLIOGRAFIA PRINCIPAL

Arroz e outros, Arquitectura de Computadores e circuitos digitais, IST PRESS, 2008

Pedro Guedes de Oliveira e Dinis Magalhães Santos, Electrónica, Uma Visão de Projeto, U.Porto Edições julho de 2018.

Taub, H. & Schilling, D. (1977), Digital Integrated Electronics, McGraw Hill.

Taub, Circuitos Digitais e microprocessadore, McGraw_Hill.

Sandige R., Modern Digital Design, McGraw-Hill 1990.

Martins A., Apontamentos da disciplina,

5. METODOLOGIAS DE ENSINO (REGRAS DE AVALIAÇÃO)

5.1 Metodologias:

- Lição expositiva
- Lição interativa
- Resolução de problemas
- Trabalho laboratorial

5.2 Regras de avaliação

5.2.1 – Avaliação contínua e exame de época normal

GUIA DE FUNCIONAMENTO DA UNIDADE CURRICULAR (GFUC)

PED.008.03

Dois testes escritos, valendo 70%, com mínimo de 6 valores. Dois trabalhos laboratoriais, que valem 30%. O exame substitui as duas frequências.

5.2.2 - Época de Recurso ou Época Especial:

- Exame escrito vale 70%, sendo os restantes 30% a componente laboratorial já referida. Os alunos podem escolher uma avaliação escrita valendo 100%

6. DEMONSTRAÇÃO DA COERÊNCIA DAS METODOLOGIAS DE ENSINO COM OS OBJETIVOS DA UC

Esta disciplina consta da apresentação de vários circuitos, ou sistemas, aos alunos, pelo que exige lições expositivas e interativas. Para se projetarem circuitos sequenciais é preciso que os alunos compreendam alguns circuitos típicos, tal como as básculas. A montagem em laboratório permite aos alunos treinar e adquirir estas competências. O estudo de memórias começa por uma exposição teórica da constituição interna destas, que permite ao aluno compreender e posteriormente projetar a expansão das referidas memórias. A conversão analógica digital exige também lições expositivas, resolução de problemas e montagem. As aulas com trabalhos laboratoriais servem para uma validação experimental das teorias ensinadas.

7. REGIME DE ASSIDUIDADE

As aulas laboratoriais têm lotação limitada, pelo que os alunos com seis faltas (1/3) ficam excluídos da avaliação laboratorial.

8. CONTACTOS E HORÁRIO DE ATENDIMENTO

Quinta-feira, das 18h 30m às 20 horas, no laboratório 41, ou no gabinete 64. Correio eletrónico: <u>amrmartins@ipg.pt</u>.

DATA

14 de outubro de 2023

O(A) Docente

(assinatura)

O(A) Coordenador(a) da Área/Grupo Disciplinar

(assinatura)