

GUIA DE FUNCIONAMENTO DA UNIDADE CURRICULAR

(GFUC)

MODELO

PED.008.03

Nome Curso	Mecânica e Informática Industrial						
Unidade curricular (UC)	Fluidos e Calor						
Ano letivo	2023-2024	Ano	1.⁰	Período	2.º semestre	ECTS	6
Regime	Obrigatório	Tempo de trabalho (horas)			Total: 162	Contacto: 60	
Docente(s)	Rui Pitarma Ferreira						
☐ Responsável	da UC ou						
⊠ Coordenador(a)	Área/Grupo Disciplinar	Rui Pitarma Ferreira					
☐ Regente	(cf. situação de cada Escola)						

GFUC PREVISTO

1. OBJETIVOS DE APRENDIZAGEM

A UC pretende fornecer os conhecimentos básicos e fundamentais de Mecânica de Fluidos e Transmissão de Calor. Preparar e sensibilizar os alunos, através de um adequado compromisso entre a teoria e a prática, para a análise e resolução de problemas envolvendo escoamentos, transformações e trocas de massa e de energia. Sensibilizar os alunos para a importância dos fluidos e calor no contexto industrial, enfatizando a necessidade de operar de modo eficiente os equipamentos, sistemas e processos, garantindo a eficiência da utilização da energia e dos recursos naturais, tendo presente a problemática da energia e do ambiente. Preparar os alunos para a frequência de unidades curriculares subsequentes, cujas bases nela assentam mais diretamente.

2. CONTEÚDOS PROGRAMÁTICOS

1. Conceitos introdutórios; 2. Distribuição de pressão num fluido; 3. Estática de fluidos; 4. Dinâmica de fluidos; 5. Aplicações práticas de estática e dinâmica de fluidos; 6. Notas sobre modelização e aplicações CFD; 7. Noções de turbomáquinas; 8. Princípios de transmissão de calor (condução e convecção). 9. Radiação térmica. 10. Aplicações práticas de transferência de calor.

3. DEMONSTRAÇÃO DA COERÊNCIA DOS CONTEÚDOS PROGRAMÁTICOS COM OS OBJETIVOS DA UC

Os capítulos 1, 2, 3, 4, 8, e 9 visam a consecução do objectivo estruturante da unidade curricular, ou seja, fornecer aos alunos os conhecimentos básicos de mecânica de fluidos e transferência de calor. Os capítulos 5, 6, 7 e 10 pretendem a consecução do objectivo complementar da unidade curricular, designadamente estudar aplicações práticas das leis fundamentais da mecânica de fluidos e transferência de calor, bem como integrar os conhecimentos adquiridos para identificar, compreender e resolver diversos problemas de engenharia com relevância prática.

GUIA DE FUNCIONAMENTO DA UNIDADE CURRICULAR

(GFUC)

MODELO

PED.008.03

4. BIBLIOGRAFIA PRINCIPAL

- Oliveira, Luís Adriano e Gameiro, António Lopes, Mecânica dos Fluidos, LIDEL, 6ª Edição, 2020. ISBN: 9789897524929
- Incropera, Frank P., Bergman, T. L., Lavine, A. e DeWitt, David P., Fundamentos de Transferência de Calor e e Massa, 7º ed.; Editora LTC, 2013. ISBN 13: 9788521625049
- Pitarma, R.A., Mecânica de Fluidos (notas didácticas da unidade curricular). IPG.

5. METODOLOGIAS DE ENSINO (REGRAS DE AVALIAÇÃO)

Expositivo com recurso a meios audiovisuais, estudo de casos, resolução de problemas, demonstrações laboratoriais e elaboração de trabalhos práticos em laboratório pelos alunos. Nas aulas procura-se articular as dimensões teórico-práticas e laboratoriais das questões a abordar, incentivando-se a participação, o debate e a reflexão individual/grupo. Utilizam-se diversos recursos educativos: esquemas no quadro, apresentações multimédia, videogramas e atividades laboratoriais. Nas sessões de orientação tutorial serão analisadas e esclarecidas as questões formuladas pelos alunos, orientando-se o seu método de estudo e os trabalhos a desenvolver.

Avaliação contínua de aprendizagem: assiduidade, trabalhos práticos e teste final.

Nota Final=10%Presenças+20%Trabalhos+70% Teste Final (Nota mínima do teste: 7 valores)

6. DEMONSTRAÇÃO DA COERÊNCIA DAS METODOLOGIAS DE ENSINO COM OS OBJETIVOS DA UC

A consecução do objetivo estruturante relaciona-se globalmente com as seguintes metodologias em particular: Lição expositiva, Lição interactiva e Sessões laboratoriais. A consecução do objetivo complementar prevê-se seja alcançada através de sessões laboratoriais, da resolução de problemas e do estudo de casos fomentando-se a reflexão individual/grupo e o debate.

7. REGIME DE ASSIDUIDADE

Assiduidade não obrigatória, mas insistentemente recomendada aos alunos.

GUIA DE FUNCIONAMENTO DA UNIDADE CURRICULAR

(GFUC)

MODELO

PED.008.03

8. CONTACTOS E HORÁRIO DE ATENDIMENTO

Contacto: rpitarma@ipg.pt; Gabinete 14 ou Laboratório de Climatização e Ambiente.

Horário de atendimento: cfr. horário disponibilizado/divulgado pela Direção ESTG.

As dúvidas devem ser esclarecidas nas horas de orientação tutorial ou atendimento.

DATA

18 de março de 2024

ASSINATURAS

Assinatura dos Docentes, Responsável/Coordenador(a)/Regente da UC ou Área/Grupo Disciplinar

O(A) Docente e Coordenador(a) da Área/Grupo Disciplinar

(assinatura)

Assinatura na qualidade de (clicar)