

SUBJECT DESCRIPTION

Course	Mechanical and Industrial Informatics					
Subject	Advanced Manufacturing Technologies					
Academic year	2023-2024	Curricular year	3rd	Study period	1st semester	
Type of subject	Compulsory	Student workload (H)	Total: 162	Contact: 60	ECTS	6
Professor(s)	Luís Miguel Lopes Lourenço, PhD					
Area/Group Coordinator Head of Department		José Reinas dos Santos André, PhD				

PLANNED SUBJECT DESCRIPTION

1. LEARNING OBJECTIVES

Upon Intended learning outcomes C1- Acquire theory and practical knowledge of 3D digital modeling (parametric modeling). Modeling of parts and mechanical assemblies.

Intended learning outcomes C2- Acquire fundamental theory and practical knowledge about rapid prototyping technologies and reverse engineering techniques.

Intended learning outcomes C3- Acquire fundamental knowledge in rapid manufacturing and intelligent production systems. Intended learning outcomes C4- Acquire theory and practical knowledge in CAD/CAM technology. Numerical control programming with CAD/CAM software.

2. PROGRAMME

1. Introduction to advanced manufacturing technologies.

2. Computer-aided three-dimensional design, parametric modeling practice.

3. Digital prototyping. Digital prototyping and traditional prototyping; an introduction to the practice of digital prototyping.

4. Rapid prototyping. Rapid prototyping processes and operating principles - advantages and disadvantages; an introduction to rapid prototyping practice.

5. Reverse engineering. Introduction to reverse engineering technology and reverse engineering practice.

6. Introduction to rapid manufacturing and intelligent production systems.

7. CAD/CAM technology and programming. CAD/CAM systems, programming and machining: hardware and software; materials to be machined; tools and cutting strategies; cutting parameters; analysis and simulation of the machining cycles; machining/job execution.

3. COHERENCE BETWEEN PROGRAMME AND OBJECTIVES

Intended learning outcomes C1 – syllabus contents in 2. Intended learning outcomes C2 – syllabus contents in 1, 3, 4 and 5. Intended learning outcomes C3 – syllabus contents in 1 and 6. Intended learning outcomes C4 – syllabus contents in 1, 2 and 7.

4. MAIN BIBLIOGRAPHY

Hopkinson, N.; Hague, R.; Dickens, P.; Rapid Manufacturing: an industrial revolution for the digital age, Wiley, 2006. ISBN: 978-0-470-03286-2.

Gillespie, Laroux K.; Design For Advanced Manufacturing: Technologies, And Processes, McGraw-Hill, 2017. ISBN: 9781259587450.

Costa, Américo; Autodesk Inventor 2013 - curso completo, FCA, 2013. ISBN: 978-972-722-736-5.

Costa, Américo; Projeto 3D em Solidworks, Cenfim, FCA editora, 2016. ISBN: 978-972-722-820-1.

Costa, Américo; Projeto 3D em Solidworks e Solidcam, Cenfim, FCA editora, 2021. ISBN: 978-972-722-913-0.

Rocha, Joaquim; "Programação de CNC para Torno e Fresadora", CENFIM, FCA editora, 2016. ISBN: 978-972-722-843-0.

Alavala, Chennakesava R.; CAD/CAM: Concepts and Applications, PHI Learning Ed., 2013. ISBN: 8120333403.

Rocha, Joaquim; Programação CAD/CAM em Mastercam, Cenfim, FCA editora, 2016. ISBN: 978-972-722-842-3.

SUBJECT DESCRIPTION

PED.013.03

Putnik, Goran D. et. al; Advanced Manufacturing Systems and Enterprises: Towards Ubiquitous and Cloud Manufacturing; University of Minho, School of Engineering, 2012.

5. TEACHING METHODOLOGIES (INCLUDING EVALUATION)

Teaching methodologies

The contents are presented using theoretical-practical lessons (TP).

The contents are presented through lectures, using the whiteboard, audiovisual media and demonstrations using CAD/CAM software and laboratory equipment and workshop CNC machines, followed by practice with student participation intended to consolidate acquired knowledge.

Student evaluation

Ongoing assessment (minimum grade – 10/20):

A minimum of 3 practical assignments throughout the semester, including a written report - 50% and their presentation / defense (50%). The evaluation is exclusively ongoing with no possibility to pass via a final exam.

6. COHERENCE BETWEEN TEACHING METHODOLOGIES AND OBJECTIVES

The oral presentation of the contents, using the whiteboard, audiovisual media, practical examples and practical demonstrations using laboratory / workshop equipment, ensures that students achieve the intended learning outcomes.

The ongoing practice throughout the lessons ensures the students acquire skills in advanced manufacturing technologies, particularly in CAD/CAM machining.

7. ATTENDANCE

N.A.

8. CONTACTS AND OFFICE HOURS

Professor: Luís Miguel Lopes Lourenço (PhD), <u>mlopes@ip.pt</u>; office n.º 67. Office Hours: *Monday 16:00-17:30; Wednesday 16:00-17:30; Friday 10:00-11:00 and 16:00-17:00.* Area Coordinator: José Reinas dos Santos André (PhD), <u>jandre@ipg.pt</u>; office n.º 13

9. OTHERS

N.A.

DATE

29 de setembro de 2023

SIGNATURES

Professor(s), Area/Group Coordinator or Head of Department signatures

Assinatura na qualidade de (clicar)

Mou (signature)

Assinatura na qualidade de (clicar)

SUBJECT DESCRIPTION

PED.013.03

(signature)

Assinatura na qualidade de (clicar)

(signature)

Assinatura na qualidade de (clicar)

(signature)